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Abstract 

Data-driven data science challenges our conceptualization of “data.” Significantly beyond capturing 

a given phenomenon, data, increasingly, are the phenomenon. Data may be iteratively manipulated 

algorithmically, undermining the “faithfulness” of data to any originating phenomenon. Crucially, 

data that are not “faithful” are inherently uncertain, as data risk becoming meaningless symbols. We 

empirically study how a community of commercially based geoscientists grapples with the 

phenomenon of offshore oil and gas reservoirs located kilometers below the seabed. The data 

available about these reservoirs are algorithmically manipulated sensor-based Internet of Things 

data. Our main contribution is the articulation of three patterns of work practices detailing how 

inherently uncertain data are woven into consequential work practices: (1) Accumulating is the 

cumulative process of supporting and triangulating one set of data with supplementary data sets; 

accumulating captures the conservative approach of backing up existing interpretations of the data. 

(2) Reframing describes the process where existing interpretations are contested by new data or 

models; reframing captures that there are limits to how far data can be manipulated. (3) Prospecting, 

or the cultivation of competing, incompatible data interpretations; while the former two patterns 

essentially attempt to regulate uncertainty, prospecting is about embracing it. Our concept of data-

centric knowing is constituted by these three interwoven, ongoing practices. 

Keywords: Data, Work Practices, Uncertainty, Empirical, Case Study, Knowing, Big Data, Data-

Driven, Data Science, Internet of Things, Commercial 

Magnus Mähring was the accepting senior editor. This research article was submitted on January 12, 2019 and 

underwent three revisions.  

1 Introduction 

Easily mistaken for a purely philosophical concern, 

data’s representational capacity, i.e., data’s capacity to 

represent a phenomenon (Zuboff, 1988; Burton-Jones, 

2014; Kallinikos, 2007; Borgmann, 1999), is 

increasingly recognized as being at the core of 

discourses about big data, data science, and data-

driven machine learning (Alaimo et al., 2020; Alaimo 

& Kallinikos, 2021; Markus, 2017, Zuboff, 2019). 

Initially referring to a physical object, process, or 

quality, data are iteratively sliced, recombined, and 

algorithmically manipulated, taking them increasingly 

away from their originating physical referents 

(Kallinikos et al., 2013; Orlikowski & Scott, 2016; 

Lusch & Nambisan, 2015). Increasingly, data are the 

phenomena, i.e., “signs” (Knorr Cetina, 1999) or 

“symbols” (Bailey et al., 2012) of events that are 

otherwise inaccessible. 

However, data’s representational capacity is exactly 

that—a capacity. It may, but most certainly need not, 

be actualized in the sense that data are woven into 

everyday, data-driven, consequential work practices 

(Günther et al., 2017). With data’s representational 
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capacity but modestly exercised, the conditions for 

actualization are reasonably well-understood: data 

need to be a “faithful” (Burton-Jones & Grange, 2013) 

representation with a “tight coupling” with the 

phenomenon (Bailey et al., 2012, p. 1500) because 

“seeing is believing” (Leonardi, 2012, p. 14). What 

remains unaccounted for, is how data that no longer 

faithfully represent a phenomenon are actualized 

(Kallinikos, 1999; see also Kitchin, 2014). This 

paucity in the literature, of increasing empirical 

relevance and significance with expanding datafication 

(Newell & Marabelli, 2015), is the focus of our paper. 

Rather than delegating this to a new role of “data 

translators” (Henke et al., 2018), we analyze the work 

practices involved.  

Crucially, data no longer faithfully representing 

phenomena are inherently uncertain, as their meaning 

is not (yet) fixed (Alaimo et al., 2020). Actualizing 

data thus involves practices of sense-making (Weick, 

1985) in situations mired in uncertainty. We pose the 

following research question: How and under what 

organizational conditions, are inherently uncertain data 

actualized in consequential work practices?  

We empirically study how a commercially based 

community of geoscientists grapples with the 

phenomenon of offshore oil and gas reservoirs located 

kilometers below the seabed. For all practical 

purposes, the data and algorithmic representations of 

the reservoirs are the reservoirs in everyday work 

practices. The available data about the oil reservoirs 

are largely algorithmically manipulated sensor-based 

Internet of Things (IoT) data with inherent epistemic 

uncertainty. We analyze the work practices of 

geoscientists dealing with incomplete, inconsistent, 

and inherently uncertain data. Their work practices 

emerge from conflicting tensions where professionally 

acquired quasi-scientific approaches run up against the 

commercial push for operational decision-making. 

We contribute with the articulation of three patterns of 

work practices, detailing how inherently uncertain data 

are actualized. First, accumulating, which is the 

cumulative process of supporting and triangulating one 

set of data with supplementary data sets. Accumulating 

captures the conservative approach of backing up 

existing interpretations of the data. Second, reframing, 

which is the process where existing interpretations are 

contested by new data or models. Reframing captures 

how there are limits to how far data can be 

manipulated. Third, prospecting1, which is the process 

of cultivating competing, incompatible data 

interpretations. With the former two patterns 

essentially attempting to regulate uncertainty, 

prospecting is about embracing it. The concept of data-

 
1 Our use of the term prospecting comes from its analogy 

with geological prospecting, which is an open-ended, 

conflictual search for competing, very often mutually 

driven knowing, then, is shorthand for the interleaving 

of these three ongoing patterns of work practices. 

The remainder of our paper is organized as follows. 

Section 2 develops our theoretical framework on 

understanding the concept of data. We review and 

discuss relevant perspectives on pressing data’s 

representational capacity beyond that of faithful 

representation. Section 3 provides context to our case 

together with an account of research methods. Our 

empirical findings are presented in Section 4, 

organized around the three patterns of practices 

developed in the data analysis from the preceding 

section. The discussion in Section 5 pursues two 

threads. First and foremost, drawing on existing 

literature, we discuss the theoretical implications of the 

three interwoven patterns of work practices 

constituting data-centric knowing by critically 

discussing their enabling conditions. Second, in further 

pursuing the conditions for data-centric knowing, we 

analyze the institutional fabric necessary to actualize 

data. To conclude, Section 6 reflects on the relevance 

of and boundary conditions for data-centric knowing 

beyond our case, in addition to offering comments on 

future research.  

2 Conceptualizing Data 

2.1 Data Are “Cooked” 

Traditionally, a representational view has data 

corresponding directly with some given, preexisting 

physical object, process, or quality. Such a view, Jones 

(2019) reminds us, is still evident, albeit in an implicit 

and diluted form. For instance, a textbook defines data 

as “raw facts that describe a particular phenomenon” 

(Haag & Cummings, 2009, p. 508), while the Royal 

Society (2012, p. 12) defines data as “numbers, 

characters, or images that designate an attribute of a 

phenomenon” (both definitions are cited in Jones, 

2019). However, such a naive, referential view of data 

has several problems, as we will discuss.  

Contrary to big data hype, in which “the numbers 

[data] speak for themselves” (Andersen, 2008), 

considerable, ongoing work is needed to craft data into 

data. The notions of “gathering” or “collecting” data 

are misleading in that they promote the misconception 

that data speak for themselves. This downplays to the 

level of nonexistence the way that data provenance—

i.e., the methods, procedures, and technologies 

employed to generate the data—shapes data use and 

interpretation (Porter, 1996). As Gitelman (2013, p. 3) 

succinctly puts it, data “are always already ‘cooked’ 

and never entirely ‘raw.’”  

inconsistent geological interpretations. In contrast, Slota et 

al. (2020) use the term to denote the rendering of data 

amendable to data science methods.  
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Thus, both collecting and curating data involve work, 

such as developing and maintaining procedures for 

cleaning, filtering, and “massaging” data (Leonelli, 

2014). Edwards (1999) examined the comprehensive 

data-gathering process informing climate-change 

research and reports that measurement devices, such as 

thermometers, must be constantly calibrated to ensure 

the validity of their readings. In this context, 

maintaining calibration involves adhering to protocols 

that compare a given thermometer with a master device 

and systematically adjust historic measurement values 

when it is discovered that a thermometer is 

uncalibrated. 

A significant source of “big” data, not the least of 

which is in industrial settings, is sensor-based IoT data 

(Singh et al., 2014). Contrary to appearances, sensors’ 

measurements do not “capture” physical reality in a 

straightforward manner. IoT measurements are highly 

constructed renderings of selected aspects of a physical 

situation, fitted for designated purposes. Anything but 

“natural,” the data gained from sensors is highly 

mediated—materially as well as epistemologically 

(Monteiro & Parmiggiani, 2019; Helmrich, 2019). 

2.2 The Representational Capacity of 

Data 

Data are inherently editable, recombinable, and subject 

to repurposing (Kallinikos et al., 2013; Alaimo et al., 

2020). This underpins discussions about datafication 

(Newell & Marabelli, 2015; Markus, 2017; Sugimoto 

et al., 2016). Numerous observations and concepts tap 

into the same idea, including, but not limited to, 

Kallinikos’s (2007) “increasingly self-referential 

rendition of reality,” Orlikowski and Scott’s (2016) 

“algorithmic phenomenon,” Baskerville et al.’s (2020), 

“digital objects,” and Nambisan and Lusch’s (2015; 

see also Monteiro & Parmiggiani, 2019) 

“liquefaction,” which denotes data’s capacity to 

decouple from their originating physical objects, 

processes, or qualities.  

Taking a step back, the idea here is to conceptualize 

data’s representational capacity beyond the realm of 

naive realism outlined above. Zuboff (1988) was one 

of the first to influential analyze data’s representational 

capacity (see also Weick, 1985). Her work generated a 

wealth of interest, primarily regarding the conditions 

for an engaged, learning-oriented relationship with 

technology (“informate”, as opposed to “automate” in 

her vocabulary). This is a pity, Burton-Jones (2014, p. 

72) notes, as “[Zuboff, 1988] may have an even 

stronger story to tell now than it did when first 

published,” given the proliferation of empirical cases 

of datafication, i.e., cases exercising data’s 

representational capacity beyond faithful 

representations (Alaimo et al., 2020; Alaimo & 

Kallinikos, 2021; Burton-Jones, 2014; Burton-Jones & 

Grange, 2013; Monteiro & Parmiggiani, 2019). 

Knorr Cetina (2009) offers a helpful way to approach 

the issue of data’s representational capacity. Her 

seminal book is based on an ethnography of high-

energy physicists’ work at the CERN particle collider 

in Geneva, Switzerland, an example of knowledge 

work completely immersed in the data of phenomena, 

but indirectly observable (see also Venters et al., 

2014). Knorr Cetina (1999) differentiates (analytically, 

not necessarily empirically) between three 

manifestations of data. Physical phenomena, first and 

traditionally, may be staged to produce data that 

“correspond” with phenomena directly. Second, 

physical conditions are manipulated to yield 

processed, partial versions of data that are 

“equivalent” or similar. Third, and most radically, 

physical phenomena are mere “signatures” and 

“footprints” of events, yielding data as signs. Bailey et 

al. (2012) arrive at essentially the same taxonomy of 

three manifestations of data. Drawing on Peirce’s 

semiotics, they identify data that are indices (a direct 

correspondence, similar to Knorr Cetina’s staged data), 

icons (similar or equivalent to Knorr Cetina’s 

processed, partial data), and symbols (no link to 

referents, similar to Knorr Cetina’s data as signs).  

Data as signs (Knorr Cetina, 1999) or symbols (Bailey 

et al., 2012) demonstrate the potential—but crucially 

not necessarily the actualization—of data’s 

representational capacity. Several scholars have 

addressed the conditions under which data as signs or 

symbols are actually woven into work practices, i.e., 

the conditions under which data become more than 

mere symbols i.e., what Kallinikos (1999) calls 

“referential attribution.” In her empirical study of 

digital transformation of pulp factories from 

experience-based, embodied, tactile handcraft—

smelling, tasting, and feeling the temperature of the 

pulp—into a remotely operated, digitally enabled 

control room, Zuboff (1988) notes the unease 

stemming from data “replacing a concrete reality” (p. 

63) and from how data “replace the sense of hands-on” 

(p. 65) and seek to “invent ways to conquer the felt 

distance of the referential function [i.e., the decoupling 

of data from the physical referent].” A lack of sensory 

feedback undermines the expertise and knowledge that 

can be acquired from physical, hands-on interaction 

with technology. Similarly, Turkle’s (2009) work 

emphasizes the dangers of simulation-based renditions 

of reality, with their strong, seductive capabilities (see 

Baudrillard, 1994). As users are gradually immersed in 

simulations, “familiarity with the behavior of 

[simulation data] can grow into something akin to 

trusting them, a new kind of witnessing” (Turkle, 2009, 

p. 63). Also, Burton-Jones and Grange (2013), with their 

focus on data representations being faithful, voice 

concerns about the limits of representational capacity, as 

data need to “faithfully represent some domain because 

they provide a more informed basis for action than 

unfaithful representations do” (2013, p. 636). 
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2.3 Toward Data-Centric Knowing 

Under Uncertainty 

To take stock, data’s representational capacity is 

reasonably well understood as long as this capacity is but 

modestly exercised, i.e., as long as data is a faithful 

representation of the “tight coupling” (Bailey et al., 2012) 

with their physical referent. The problem, however, is that 

the datafication of our lifeworld—the slicing, dicing, and 

algorithmic manipulation of data that undermine the 

faithfulness of the data—leaves an expanding empirical 

phenomenon inadequately accounted for. The aim and 

ambition of our concept of data-centric knowing is to 

address this paucity in the literature, a theoretical 

paucity with growing empirical relevance. Our aim is in 

line with the call made by Lyytinen and Grover (2017, 

p. 229) “to critically evaluate how we approach and 

think about data, its provenance, privacy, and related 

organizational practices.” 

Several theoretical problems, resonating with our 

subsequent empirical analysis, motivate our 

development of data-centric knowing. Navigating in a 

situation with, as it were, no stable or fixed ground, 

data-centric knowing is centered around fallible 

knowing practices, hence tenets of pragmatic action 

(Dewey, 1930). Without faithful representation, 

inherent uncertainty exists regarding what data signify, 

if anything (Alaimo et al., 2020). A principal task, 

then, for data-centric knowing is to detail how users 

navigate with inherent epistemic uncertainty. 

Ours is a case of data-driven work practices. A 

defining, somewhat ironic, aspect is that users drown 

in data while knowing is always underdetermined by 

the data. So how do users cope? Pragmatism, again, 

offers a starting point for data-centric knowing.  

Abductive reasoning, i.e., neither inductive nor 

deductive, is particularly relevant in navigating with 

epistemic uncertainty (Dunne & Dougherty, 2016). 

Abduction involves short-cutting searches for 

“innumerable possible hypotheses all accounting for 

the data at hand” (Brown, 1983, p. 401). The 

parsimony or satisficing principle (March, 1994) 

regulating abduction sets boundaries (e.g., resources, 

time) for an otherwise open-ended process. Good-

enough solutions ensure the arrival at a decision within 

set limits. However, the satisficing principle assumes 

that you know what you are looking for. In many 

situations, you are not looking for “known unknowns,” 

but rather “unknown unknowns”2 (Loch et al., 2011). 

Thus, data-centric knowing addresses what remains 

underspecified in the extant literature—i.e., detailing 

the interleaved patterns of work practices that go into 

 
2 Then-Secretary of Defense Donald Rumsfeld (in)famously 

used the phrase during his briefing on the Iraq situation. 

grappling with different levels of and forms of 

uncertainty in the data at the basis of operational 

action- and decision-making. Our case provides a 

particularly vivid empirical illustration to develop an 

understanding of data-centric knowing. 

3 Method 

3.1 Case Context 

Our case studies exploration, i.e., the practice of 

searching for commercially viable oil and gas reservoirs 

through a European-based, internationally oriented, 

upstream oil operator dubbed OilComp. Distinctly 

different from its historic, roughneck origins, oil 

exploration in our case is a decisively knowledge-

intensive, data-driven endeavor that represents the most 

significant investment in OilComp, typically 10-20% of 

total investments. Oil exploration is fiercely competitive. 

Exploration is the most strategically important activity for 

an oil operator, and strongly influences long-term 

viability and global competitiveness.  

Empirically, we study the community of 

“explorationists,” a term that they use to refer to 

themselves collectively (in Norwegian: tolkere). 

Explorationists comprise about 2,000 of OilComp’s 

20,000 employees worldwide. They are organized into 

projects of 7-10 people each, and we followed three 

projects. Explorationists comprise several professional 

disciplines within the geosciences, including geology, 

geophysics, reservoir engineering, petroleum 

engineering, and petrochemical engineering. We focus 

empirically on explorationists working in areas already 

identified by OilComp as commercially interesting. 3 

Co-located with the explorationists are several “data 

managers” that support explorationists’ work. The data 

managers help locate, prepare, and present the geodata 

required by the explorationists (Mikalsen & Monteiro, 

2018). There is approximately one data manager for 

every 10 explorationists.  

The hydrocarbon reservoirs explored by OilComp in 

our case study lie 3-5 kilometers below the seabed and 

are knowable largely through sensor-based IoT data, 

notably seismic data (acoustic reflection 

measurements and processing), well logs 

(electromagnetic and radioactive measurements of 

rock properties), and production data (real-time 

measurements of flow volume, temperature, pressure, 

and chemical composition). The work practices of 

explorationists rely on a portfolio of specialized digital 

tools for algorithmically manipulating the sensor-based 

IoT data. Prominent tools include seismic processing 

(for velocity determination, 2D and 3D seismic imaging 

3 This corresponds to so-called license exploration. Prior to 

this, there is screening, i.e., deliberations about whether or 

not OilComp should enter into an area.  
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in either time or depth), geological modeling (to 

correlate well logs, build cross-sections and create 

geological maps), petrophysical tools (to load and 

manage well logs), and simulation tools (to estimate 

present and future hydrocarbon reservoirs, but also to 

interpret, model and validate traps). 

For all practical purposes, the physical phenomenon the 

explorationists struggle to know in their everyday work 

practices—oil and gas reservoirs kilometers below the 

seabed hence not directly accessible—is a data-driven 

algorithmic phenomenon (Bond, 2015). What the 

explorationists know is how they know it (Monteiro & 

Parmiggiani, 2019), which is through sensor-based IoT 

data thoroughly manipulated algorithmically.  

The explorationists know only too well that there are 

inherent epistemic uncertainties based on the lack of 

completeness, accuracy, and consistency in sensor-

based IoT data, but they have no option but to rely on 

them. Consider accuracy. With a sigh, one explorationist 

explained that a down-hole pressure sensor’s lifespan 

“is about two years,” before “calibration will be off.” 

Consistency across data types is challenging for several 

reasons, including the fact that data granularity varies. 

Explorationists draw heavily on seismic data. The 

attraction of seismic data for the explorationists is that 

they cover wide geographical areas (several square 

kilometers), thus providing a much-needed overview of 

geophysical conditions. The problem, however, is that 

seismic data are also crude in the sense that the 

resolution cannot distinguish between entities smaller 

than a cube with 100-meter-long sides (i.e., entities 

smaller than the size of a 15-story building). In contrast, 

well log data are fine-grained with a resolution of down 

to a meter, but necessarily only cover the well’s 

pinpointed location (Figure 1 illustrates these data 

types). 

Data quality is a chronic concern, not only because of 

error-prone IoT measurements, but also because data are 

shaped by the purpose of their collection. For instance, 

a couple of decades ago, well-logging focused on deep 

levels, as these corresponded to the geological era of 

identified interest, Jura. 4  However, more recently, 

explorationists have become interested in earlier 

geological eras too, i.e., well logs’ shallower 

stratigraphic layers: “but when we go back in time, the 

 
4 In this area, rivers have transported and sedimented matters 

in layers. The layers indicate age accordingly.  
5 The naming of our third pattern of data-centric knowing, 

prospecting, is inspired by the work with geological 

prospects. However, we use prospecting (the verb) for the 

third pattern and prospect (the noun) for concrete, empirical 

prediction the explorationists are working with. 

shallow levels were not logged properly [i.e., data 

quality is poor here], [in contrast to] the deep levels.”  

Oil exploration entails data-driven predictions about, in 

their vocabulary, a “prospect,”5 i.e., a candidate for an 

oil reservoir in a particular geographical location and 

geological formation. Verifying predictions by actually 

drilling an oil well may take many years, if it is even 

possible, with the cost of drilling approximately 

USD$100 million. Acquiring new seismic data to learn 

more about prospects is also costly, albeit less so than 

drilling. Explorationists’ work, then, revolves around 

identifying, evaluating, and prioritizing these 

predictions by working with the data at hand in the hope 

that one day their prospects will indeed be validated by 

actual drilling.  

Oil exploration is a search for particular geological 

conditions, what they call a play. A play fulfills three 

conditions: a source rock (from organic material, 

geothermally transformed into hydrocarbons), a 

migration path (avoiding the fate of most hydrocarbons, 

to evaporate or dissolve), and a trap (a rock sealing 

hydrocarbon into a reservoir).6 The search takes one of 

two distinctly different forms. Akin to a search for the 

proverbial needle in a haystack, one starts with “proven 

plays” in the area, i.e., particular configurations of rocks 

and formations that, through drilling, have already 

yielded oil discoveries. The other type of search entails 

working with an “unproven play,” in which you need to 

develop the concept first, essentially an understanding 

containing the three necessary conditions above. As one 

explorationist explained, “[it’s] about [traveling] into 

the unknown, toward a new concept.”  

Oil exploration in OilComp is regulated by a formally 

defined, staged funnel model (see Figure 2). The first 

stage entails deciding what region (an area the size of 

about 100 square kilometers) to consider, then zooming 

in on (several) potential prospects before deciding 

whether to drill one or more of the prospects. Finally, if 

a significant discovery is made, the discovery is 

appraised, which can entail the drilling of delineation 

wells to determine the size of the oil field more 

accurately and evaluate how best to develop it and 

produce oil cost-effectively. A plan for development 

then must be submitted to national petroleum authorities 

for approval before operations can commence. 

6 This is true for traditional or “conventional” oil exploration. 

Hydrocarbons in “unconventionals,” such as shale gas 

produced by fracking, is different. There is no trap in 

unconventionals. The migrating path is a rock with high 

porosity where very low permeability traps the 

hydrocarbons. The explorationists we study are searching for 

conventional oil only.  
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Figure 1. Typical Visual Representations of the Three Principal Types of Data: Seismic Data (left), Well Logs 

(middle), and Production Data (right) 

 

 
Figure 2. An Overview of the Funnel Model for the Life Cycle of Prospects with Foundational Data 

 

At each stage (“decision gate”) in OilComp’s funnel 

process, there are different, formal requirements for 

actualizing data from exploration and the character of 

the decision-making. When proceeding further into 

the funnel—and, thus, closer to a potential heavy 

investment—the decision-making process, not 

unexpectedly, becomes more elaborate, as we 

illustrate below. 

3.2 Access to Case 

Access to our case was nontrivial and negotiated. The 

oil and gas sector in Northern Europe is increasingly 

global, both in its own activities as well as through 

international collaborations and ventures. 

Traditionally open to research collaborations, the 

companies, especially larger ones such as OilComp, 

have gradually regulated and tightened collaborations 

                

Figure 1. Typical visual representations of the 3 principal types of data: seismic data (left), well 

logs (middle) and production data (right)  
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by imposing more formal managerial approval 

procedures. As a consequence, access to the case on 

which we report in this paper had to be negotiated. 

Access was granted by “packaging” it as one element 

within a larger research center involving several 

researchers (including the second author) and 

industrial partners (including OilComp). Piggy-

backing onto the technological prototyping that the 

research center focused on, our access came as a 

response to the research center’s need to understand 

the demand side of their prototypes supporting oil 

exploration. Our access to the case accordingly relies 

on two pillars. The second author’s long-standing 

relationship with the research center’s partners was 

crucial. In addition, we had to make ourselves useful 

within the research center by facilitating the 

communication of concerns, demands, and 

experiences from users (explorationists and data 

managers included) back to researchers engaged in 

prototyping. Thus, we prepared presentations of 

preliminary results and participated in meetings and 

workshops.  

3.3 Data Collection 

Our data collection spanned more than four years 

(February 2013-October 2017) and proceeded in rounds. 

Starting broadly, we studied the work processes and key 

concerns of actors implicated in oil exploration and their 

mode of collaboration. We derived a sense of the cross-

pressures that oil exploration gets caught up in, such as 

defending tall investments, working with deadlines, and 

dealing with incomplete data of variable quality. 

Following a suggestion from van Maanen (1988), we 

took extensive field notes, ensuring that we separated 

informants’ data from our own comments, reflections, 

and questions. We gradually focused on the 

explorationists’ work practices, including their use of 

digital tools and collaboration patterns. During the final 

round, we focused specifically on how the explorationists 

use their data, growing steadily more aware of the 

convoluted relationship between data and decision-

making in oil exploration. 

We relied on three types of data (see Table 1 for an 

overview). The first author collected most of the data, but 

the second author also participated, especially during the 

later rounds. Notably, the second author also drew on 

background data from more than a decade of sustained 

research on digitalization in the oil and gas sector. 

First, we used participant observations. As the details of 

explorationists’ strategies are core assets, we were 

initially given office space with data managers and 

thereby embedded within the exploration unit. The field 

researcher spent time getting to know the data managers, 

asked questions when things happened at the office, took 

breaks with them, interviewed them, had lunch and 

dinners with them. Since data managers are tasked with 

finding, preparing, and presenting the required data to 

explorationists, this provided an effective entry into the 

explorationists’ practices. We observed data managers’ 

everyday work routines, including their close 

interactions with explorationists. Most office walls are 

decorated with maps and geological illustrations of 2D 

seismic and well logs, and a constant buzz from informal 

conversations can be heard. Explorationists regularly 

strolled over to the data managers for a cup of coffee or 

popped into someone’s office to explain what data were 

urgently needed for a certain purpose.  

From our initial home with the data managers, we also 

gradually got to know the explorationists. Accordingly, 

participant observations of data managers served as a 

resource for identifying and recruiting new informants. 

Spending time with our informants during their everyday 

work allowed us to explore nuances, unclarities, and 

questions that lingered after interviews. In informal 

conversations over coffee or lunch, we could pick up 

questions or puzzling issues that we were unable to 

pursue within the more fixed boundaries of our 

semistructured interviews. For instance, we inquired into 

why and how searching, in the age of Google, was 

complicated by different naming conventions across oil 

fields and professional subcommunities of 

explorationists. We also conducted participant 

observations through a variety of meetings, workshops, 

and seminars. Some formal, but most less so, these 

events gave us a chance to observe how explorationists 

backed up their interpretations, how they were 

challenged, and how agreement on how to proceed 

emerged.  

Second, we conducted semistructured interviews that 

lasted 45-90 minutes each, with most lasting a little over 

an hour. Interviews were transcribed. As indicated 

above, we exploited the interweaving of participant 

observations and interviews. We conducted interviews in 

the informants’ workspaces, which allowed informants 

to use their tools to give examples of geodata problems 

and concerns. Typically, they would point to their 

screens while explaining it all to us.  

Third, we leveraged both electronic and paper-based 

documents, collecting both internal and external 

documents. Internal documents included memos, slide 

presentations, and reports. External documents covered 

public information on drill results (drill operations, 

results, and tests conducted), reclassified interpretations 

(final well reports, core photos, and well logs), and public 

reports on OilComp discoveries and recoverable 

reserves. The documents, especially the internal ones, 

e.g., from presentations, were particularly useful in 

identifying concerns and discussions. Examples of 

internal documents include prospects, workflow 

descriptions, tool screenshots and guides, data types, 

databases, and procedures and issues concerning 

database querying and the presentation of results. We 

used 150 pages of internal documents in our analysis.  
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Table 1. Summary of Data Collection 

Participant observation: 25 full days, 60 machine-written pages of field notes 

Everyday work practices of explorationists and 

data managers 

25 full days of observations and informal conversations with 

explorationists and data managers in their offices, around coffee tables, 

and during their lunch breaks 

Participation in workshops, meetings, and 

seminars 

Six one-day events with 19 participants altogether (explorationists, data 

managers, process owners, and IT management) 

Semi-structured interviews: 27 interviews, 45-90 minutes each, transcribed 

15 explorationists Geologists, geochemists, and geophysicists  

12 data managers in exploration Project and central data managers  

Documents: electronic and paper-based 

Internal 

Documents 

Descriptions of routines and work practices, manuals for tools, example 

prospects, internal reports and memos, meeting minutes, overviews of 

challenges with querying databases, and presented results  

MS SharePoint team sites Project reports, discussions, and slide presentations 

Public 
OilComp information 

Drilling operations, tests, and results, reclassified interpretations, and 

reports on discoveries and recoverable volumes 

Norwegian Petroleum Directorate 

FactPages 

NPD FactPages (http://factpages.npd.no/factpages/) contain information 

regarding petroleum activities on the Norwegian continental shelf (see 

example in Figure 3). The information is synchronized with the NPD’s 

databases on a daily basis. 

Diskos Database 

The Diskos National Data Repository (NDR) is Norway’s national data 

repository for petroleum data. Its index is open to the public and contains, 

in principle, all geodata (seismic, well, and production). Figure 1 provides 

examples. 

  

Figure 3. Example of a Wellbore Log and Wellbore History from NPD FactPages
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3.4 Data Analysis 

Our data analysis process was interpretative 

(Walsham, 1995), as we sought to capture the 

perceptions on data actualization from the actors 

involved in exploration. Data analysis was iterative. 

Data collection overlapped with data analysis, thus 

granting us the flexibility to continuously consider our 

partial interpretations toward a gradually expanding 

amount of data and to refine our interpretations 

together with the actors in the case (Klein & Myers, 

1999). Our data analysis may be reconstructed into 

four main stages.  

The first round of coding was open-ended (Wiesche et 

al., 2017). We sought an overview of relevant actors, 

organizational routines, and prominent concerns 

within the unit of exploration. The first author, who 

collected most of the data, immersed himself in the 

data. During this round, we attached initial labels, 

consisting of sentences and paragraphs capturing 

salient aspects of the work of explorationists. An 

example of a label is “well and seismic data turn 

indications into leads” (with empirical excerpts, e.g., 

“The process is such that you get many ideas when you 

are looking at the seismic. 100 ideas, perhaps 200. 

Beneath them we have different branches, and out of 

them we have been able to concretize approximately 

100 to something that can be a precursor to a prospect, 

what we call a lead, that means, we set a polygon on a 

map, you can define an area, you can calculate a 

volume, and you can calculate probabilities”, and “We 

use well and seismic data. It is very rarely gravitational 

data and magnetometric data, here the level of detail is 

poorer”). We manually coded data using word 

processing software. We used bold text for descriptive 

codes and entered the data under the codes. We 

collected descriptive codes and illustrative empirical 

data in tables, developing 432 descriptive codes.  

The second round of analysis involved both authors. In 

this round, we focused on the work practices of 

explorationists as a particular category of data 

(Wiesche et al., 2017), looking closer at their use of 

digital tools, in general, and the sense in which they 

worked with data, in particular. Using the tables with 

the open codes from the previous rounds as a starting 

point, we selectively coded the data. We created a 10-

page data analysis document with selective codes and 

empirical examples. This document served as a basis 

for discussion between the authors but also with our 

research group to refine our understanding by 

challenging our preliminary interpretations. Through 

16 iterations, where codes and data were compared and 

challenged, we gradually unpacked the professional 

community of explorationists, comprising a 

heterogenous set of more than ten professional 

disciplines with different roles and tasks. The 

heterogeneity of professional disciplines under the 

umbrella term “explorationist” is mirrored in the 

extensive list of specialized digital tools used by the 

explorationists. There are corporate databases for 

seismic data (including navigation data, faults, 

horizons and grids), well data (such as drilling data, 

well logs, geochemical analysis, and core sample 

images) and production data (volume, pressure, 

temperature). The three principal data types used by 

explorationists are illustrated in Figure 1. In addition, 

there are extensive, public repositories for all oil 

activities (exploration, drilling, production, 

maintenance) on the Norwegian continental shelf (see 

Table 1), a feature of the political and institutional 

history of North Europe distinctly different from that 

in North America. We developed an understanding of 

the collaborative practices within the units in which 

explorationists work, but also learned why and when 

they interact with outside specialists or management. 

We analyzed how explorationists refine and ensure 

quality control on their predictions i.e., prospects. 

The third round focused on how explorationists 

implicate data in their work practices, an 

underresearched theme in IS research on data science 

(Günther et al., 2017; Sivarajah et al., 2017). Through 

a form of memoing (Wiesche et al., 2017), we wrote 

up concepts, categories, and the relationship between 

them. We generated, over the life cycle of prospects for 

oil reservoirs, visual illustrations and tables depicting 

how the chronological development of a prospect 

occurs, including the different units involved, their 

main goals, the data used, the digital tools used, the 

actors involved, their assumptions, their evaluation 

procedures—i.e., an overview of the data that 

explorationists consume and produce at certain times 

in the exploration process, and how they use it.  

In the fourth round, we engaged with theoretical 

imports to conceptualize patterns of work practices 

detailing how data are actualized in oil exploration. 

Anything but clean slates (Suddaby, 2006), our prior 

experience influenced our analysis. Our long-standing 

interests in work practices, knowledge work, and 

organizational change served as resources. This round 

may be characterized as largely inductive but with 

formative, deductive injections. Early on, we were 

puzzled by the sparse and underdetermined data on 

which exploration is based: logging from a few wells 

are literally presented like pins on a vast map together 

with coarse-grained seismic images. How were these 

data actualized (Knorr Cetina, 1999) in the work 

practices of explorationists, we asked ourselves. 

Clearly, it was not because they “faithfully” represent 

(geological) reality (Burton-Jones & Grange, 2012; 

Zuboff, 1989). A principal reason, we inductively 

found, was the gradual support through supplementary 

data (see Leonelli, 2014).  
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”We see it in that the definitions of
anticlines, faults and irregularities do not 
match what you see on the seismic, it 
does not match. ” 

Connecting the old with 

the new
• ironing out 

inconsistencies

• crafting consistencies

Deliberating

• adding nuances
• identifying 

assumptions

Accumulating

Forging consistency

Gap filling

Open coding (in bold) Selective codes Practice

Accommodating the data 
generation experience
• actualizing data
• mobilizing additional 

data

“You need to feel confidence in the data 
you work with. Or else they are but lines 
on a sheet. And then you will in turn 
start to feel insecurity when you drive a 
concept forward ”

“you have seen a lot of data from 
before. You know when things are
connected. You have actually worked
with [creating] logs, you see how things
connect ”

” The understanding of producing fields
is always important for us in developing
a new concept […] and they were
interested in exploring the possibilities of
extracting oil from there, because you
have a lot of in place oil.

“ We look at all the data we have and 
see if it can support the concept ”

”...you interpret old maps with what you
can see with new seismic...” 

“All the gaps in between is what we do. 
We do often not have data in these small 
areas, we have to go look fairly hard to 
see what we can piece together”

“how far East can these hydrocarbons 
migrate?”

Extrapolating data
• Using analogues 
• looking for similar but not 

same geology

Grappling with ill-formed data

• Grapple with inconsistent data
• Reconsider basin model  

Reframing

”Any new well can change the basin evolution, 
any new well can change our predictions ”

“We have prospects in licenses where
OilCompany is not a partner, and when we see
that the competitors drill, then we try to pay
attention to how it goes. If they have found
something interesting, if there is a discovery, or 
not, then we try to trade this well ”

Practice

Reinterpreting

Generating new  possibilities in data

• Generate alternative geological 
scenarios

• Resource-bounded search for 

alternatives  

Open coding (in bold) Selective codes

"these things can give us great opportunities…”

Finding Play 
opener

”The problem is when you do not have data. 
Direct data. You are having a map or a concept
that makes sense and the closest well is 50 km, 
then you try to extrapolate this info. Then is 
when you need to use geology, we did maps etc. 
Ok, this is in a similar geological position so it 
may be the same. And then you use analogs. 
Ok, I´m here, which well is in closest geological
time and area. Ok that one, it can be very far 
off, ok, the data of the well is put in here.  If I 
were right and we are at the same time and in 
the same kind of rock etc. I take this well and I 
put it here and say; I use this porosity, I use this
permeability. As an analog.”

“Interpretations become dated. The limitation 
period for an interpretation is 5-10 years… and 
you must redo it.”

”You always have probabilities. That is why 
when you talk to the guys from field 
development, they never like what we do.”
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Figure 4. Summary of our Interpretative Template with Three Patterns of Work Practices (Main Constructs) 

Supplemented with Underlying Codes and Empirical Excerpts 

 

This conservative, cumulative process is captured by the 

first of our three identified patterns of work practices, 

accumulating. It empirically represents the dominant 

pattern of working. However, the continuous work of 

accumulating is occasionally interrupted. Similar to 

pragmatic action, our second practice, reframing, 

captures how new geodata regularly contest prevalent 

models and interpretations. 

Our third practice, prospecting, emerged to capture the 

strikingly provisional nature of the geological 

interpretations underpinning the oil prospects. In our 

experience, agreement was never realized. At every 

juncture, competing interpretations were voiced and 

mobilized. However, since OilComp is not a debate club, 

in the absence of anything close to agreement, provisional 

agreement was forged for the purpose of deciding what to 

do (Kellog et al., 2006; Mol, 2002; Oborn et al., 2011). 

Multiple interpretations are the norm and “agreement” is 

but a provisional arrangement to solve the what-to-do-

next imperative of pragmatic action. 

Figure 4 summarizes the interpretative template resulting 

from our process of data analysis. It outlines our three 

patterns of work practices with concepts aggregated from 

the coding as well as illustrative empirical excerpts. In the 

next section, we organize our findings around these three 

patterns of work practices. 

4 Findings 

4.1 Accumulating: Gathering 

Organizationally Credible Evidence 

A team of explorationists works for extended periods 

of time, typically years, with its “prospects,” i.e., its 

candidates for yet to be discovered oil reservoirs. A 

prospect is essentially a prediction about an oil 

reservoir’s location—including risk, volume, and 

value estimates—should the prospect be considered for 

drilling at a later stage. Working in co-located teams 

organized in the same corridor of an office building 

that is part of OilComp’s headquarters, explorationists’ 

everyday work routines revolve around refining 

interpretations of data that justify prospects, 

interweaving individual work with informal 

discussions between fellow team members. Few bother 

to close their office doors, making it easy to drop by 

for consultations about issues that come up. Small 

groups of explorationists regularly engage in informal 

discussions around the whiteboard in someone’s 

office. 

For long stretches of time, explorationists work in 

areas with proven plays—for example, areas where 

they already have producing fields. Producing fields 

” From that we calculate a range with
montecarlo simulations for volume. But then it 
is the next thing, which is to set a probability of
different things, and there it is a lot of
speculation and meaning, but usually it is 
realistic, and we can see that over time”

Enumerating probabilities
• risking 
• satisficing models

Estimating economic factors:
• irreconcilable differences 
• deciding risk profile 

Continuously comparing and 
contrasting
• juggling multiple 

possibilities

• peer assisting

Prospecting” some prospects can potentially have big
volumes, but the chances of that being right are
1%, while other prospects have very small
volumes and the chances are very high, so when
we run those ones it is also depending on where
they are. It is like, this is very small but it is likely
and close to infrastructure, so that is our winner
”

“ We look at the geological and the geophysical. 
What were our assessments before we drilled
compared to what we discover. A before and 
after comparison”

Open coding (in bold) Selective codes Practice

Quantifying uncertainty

Searching for 
unknown unknowns

“…you get many ideas when you are looking at 
the seismic. 100 ideas, perhaps 200. Of those, we 
concretize approximately 100 to something that 
is a precursor to a prospect, something we call a 
lead”

“…we want that data as well, and then we re-
evaluate our prospects due to this data, and re-
risk them or downgrade them or upgrade
them” 

“Concerning that part that is named risking, we 
put a probability that you have a trap, that it is 
sealed that you have a reservoir, that you have 
migration.”

“When you talk to experts and advisors, they 
focus on nuances and details and its 
dimensions.”
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creates assumptions—they know what they are looking 

for. In a given area, a proven play is a particular 

geological configuration in which necessary (but not 

sufficient) conditions for an oil reservoir—i.e., source 

rock, migration paths, and traps—are known to exist 

(see Section 3.1). Working with a proven play, 

exploration focuses on gaps, i.e., areas where 

discoveries have not yet been made, but where they 

believe hydrocarbons may have migrated. As an 

exploration team leader explained, “in this area 

[pointing to his screen], we knew that in the southern 

[name of the basin], which in this case is 250 

kilometers north-south, a lot of hydrocarbons have 

been generated. So, how far east can those 

hydrocarbons migrate?”    

However, turning opportunities into more credible 

prospects involves actualizing data as evidence that a 

gap may contain commercially interesting amounts of 

hydrocarbons. Working with a proven play implies that 

large amounts of well and seismic data are available 

(namely all historic discoveries regarding that play). 

Dealing with the vast amount of available, sensor-

based IoT data, the team of explorationists mobilize 

data and thus accumulate evidence that its prospect fits 

the proven play. One of our informants was struggling 

in front of his screen using a petrophysical analysis tool 

filled with well-log data. The old well data he had 

available did not support his prospect. Was he wrong 

or were the data wrong? The data dated from when the 

well was originally drilled back in the 1970s. As he 

explained to us, the knowledge that injecting mud into 

the borehole while drilling influences the temperature 

readings in the well “was learned only in the 1980s.” 

Instead of simply contradicting his prospect, he 

assigned a mark signifying that the data were of low 

quality to indicate their lack of relevance. To be able 

to do this, one explorationist explains, experience from 

parts of exploration work is necessary, e.g., creating 

well logs: “You need to feel confidence in the data you 

work with. Or else they are but lines on a sheet. And 

then you will in turn start to feel insecurity when you 

drive a concept forward.” Thus, the work practice 

implicated in accumulating evidence includes ironing 

out contradictory data.   

An important task in determining a prospect’s 

credibility is to see whether assumptions made fit with 

several types of data, i.e., what effectively corresponds 

to a form of triangulation. So-called “well tie-ins” are 

a particularly important way in which this triangulation 

operates. Digital interpretation tools are used to 

determine the relationship between boundaries in the 

well logs and seismic reflections, consequently 

producing a relationship between the well logs 

(measured by depth) and the seismic reflections 

(measured in time). A well tie-in is an effort to find 

consistency between the broad but crude overview 

provided by seismic data and the much more detailed 

well data that come from measurements from the 

specific, pinpointed location of an oil well. Perfect 

consistency between seismic and well data occurs 

rarely, if ever. Consistency is crafted through well tie-

ins, which are labor-intensive endeavors. We sat down 

with one of the explorationists tasked with a well tie-

in and visually superimposed well data onto seismic 

data (see Figure 1). “We see it in that the definitions of 

anticlines, faults, and irregularities do not match what 

you see on the seismic, it does not match,” he noted. 

He did not despair, however, as this could be 

explained: “It matters how old the wells are, what types 

of data were collected, how far away the wells are. If 

they are close, that is obviously beneficial.” He keeps 

working. The inconsistency between seismic and well 

data is compounded by the fact that they are measured 

with different scales: Seismic data are measured as the 

time that it takes an echo of a particular sound wave to 

travel back to the sensors after being refracted by 

subsurface rocks, while well data are measured relative 

to the depth (distance in meters) in the well where they 

were recorded. As the speed of acoustic waves differs 

with different types of rocks, the time-to-depth 

conversion is nonlinear and is about gaining a sense of 

subsurface “nonconformities.” Nonconformities result 

from geological processes such as fault lines stemming 

from earthquakes. As our informant explained, “if you 

have very steep non-conformities, [the 

nonconformities] can jump several hundred meters 

back and forth from time to depth.” 

4.2 Reframing: Contesting Prevalent 

Predictions 

The account above is one of continuity in the sense that 

explorationists gradually accumulate evidence to 

support a prospect (prediction) in a given geological 

formation with a proven play. Thus, the actualizing of 

data amounts to crafting the fitting of data to one’s 

predictions or ironing out inconsistencies. The 

explorationists painstakingly fill in the gaps to back up 

their leads and prospects, with data marshaled into 

(more) organizationally credible evidence. 

Explorationists “stretch” their data, seeking to 

strengthen rather than defeat their predictions. This 

essentially conservative approach is at times 

punctuated by new data that can neither be 

accommodated nor dismissed, which leads us to our 

second pattern of work practices. 

With a bit of drama, one explorationist exclaims, “Any 

new well can change the basin evolution; any new well 

can change our predictions!” He knows that a change in 

the basin evolution is a radical change. The basin model 

that the explorationists rely on when searching in an area 

is effectively the prevailing understanding of that area’s 

geological history—the result of extensive efforts—and 

represents significant sunk investment in terms of earlier 

work. One key activity in substantiating a prospect is 
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modeling (“basin modeling”) the history of the area’s 

geological evolution. Once a basin model is 

conceptualized, it is tested against existing well data for 

consistency. However, in practice, consistency is never 

fully achieved. Working on a basin model, one 

explorationist explains how the team selects 200 

reference wells out of a sample of 1,000 wells to support 

this consistency check. Well data is inconsistent, so they 

use heuristics such as the well’s age (assuming new 

wells have better data quality than older ones), and then 

consider how much work went into calibrating the data, 

noting that often, “we must go in and calibrate the well 

to the seismic [i.e., well tie-in]. And if it is a bad 

calibration, if things do not match, then the logs are 

poorly collected.” Poor quality can be tied to a variety 

of reasons, e.g., “things that happened on the rig that are 

not documented well enough, that give a sloppy [well] 

log.” 

In a similar vein, another explorationist recounted his 

struggles with deeply inconsistent data on a field. The 

seismic data indicated that there should be sand 

throughout the field, but the well data told a different 

story:  

I have a well here [pointing to the screen] 

that hits sand, and I have a well here 

[pointing] that does not hit sand. And then I 

have a seismic processing [pointing to 

another location on the screen] that shows 

me it should be sand all over. Then I need to 

decide: No, that [pointing] is not sand; this 

[pointing] is sand.     

To account for different probabilities, data sometimes 

need to be extrapolated from geographic areas that are 

less known into geographic areas that are more well-

known geologically—for example, because they have 

drilled more there, or shot more seismic surveys. Data 

then are extrapolated, as one explorationist explains, 

talking about a well:  

Ok that one, it can be very far off, ok, the data 

of the well is put in here. If I were right and 

we are at the same time and in the same kind 

of rock etc. I take this well and I put it here 

and say, I use this porosity, I use this 

permeability. As an analog.  

In the world of explorationists, data are king. You can 

make the most elaborate models, but, if they do not hold 

up against the data, they never make it into everyday 

work practices. One explorationist warns: 

I do not fall in love with my models, I mean, 

they are wrong by definition. Some people 

get really personal, and if new data goes 

against it, they try to go all around to try 

to avoid the data. If the data go in an 

opposite direction of your concept, it is 

better to just kill it.  

Explorationists have an unquenched thirst for new 

data. Well data, with its fine-grained measurements, 

are particularly appreciated. With coarse-grained 

seismic data, well data are the closest that 

explorationists come to “hard” evidence. Given the 

considerable financial costs of drilling new wells, 

OilComp invests in the drilling of a few dozen wells in 

a typical year in the area reported on in our case study. 

The explorationists’ thirst for new well data makes 

them cut corners in formal procedures. Rather than use 

the formal, time-consuming process of quality-control 

data from an ongoing well-drilling operation lasting a 

month or two, they import the data directly from the 

drilling database. Two purposes motivate 

explorationists’ keen interest in new well data. First, 

they provide immediate validation: Was there an oil 

discovery as they had predicted? However, new data 

also provide a much valued resource for considering 

unproven plays and alternative geological scenarios: 

“When we have a new well, it is not like we do not care 

anymore [whether there was oil or not],” one 

explorationist told us, “we use it for future exploration 

… I care about the data. Data from the well is key.” 

The operational reality of operating within a highly 

competitive business environment is internalized 

among the explorationists. Working with prospects is 

always resource bounded; thus, they are neither 

exhaustive nor perfect. Searching for new 

opportunities in the form of unproven plays is no 

exception. The resource-demanding nature of 

assessing the credibility of new concepts (unproven 

plays) forces settling for good enough, rather than 

elaborate assessments:  

We often do not have time to work out all 

[the concepts]; it takes too much time. We 

very often have limited time to drive 

concepts forward. It can be a matter of a 

few months. During that time, a lot of data 

must be pieced together, [and] a model 

needs to be built and to run basin 

simulations. In sum, it is a bit hard. 

4.3 Prospecting: Cultivating Alternatives 

The essentially abductive processes described above 

depict the practical constraints on resources (economy) 

that regulate and format explorationists’ work, 

underscoring that prospects are satisficing, i.e., good 

enough to comply with the institutionalized decision-

making process. The explorationists comply to produce 

the required input. Explorationists estimate the amounts 

of oil that a well might produce. In one case, volume was 

estimated from variables such as rock porosity 

(estimated with well logs and/or core samples), oil 

saturation in the rock (estimated using electrical 

resistivity well logs), and the recovery factor (estimated 

from reservoir permeability and oil viscosity). As a 

means of bracketing uncertainty, the team performed 
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Monte Carlo simulations (i.e., a statistical approach to 

risk analysis in which numbers are selected from likely 

ranges of input data and through iterative calculations to 

determine a range of probable outcomes) using risk-

assessment software. However, the version fed to 

management as part of formal decision gates radically 

undercommunicates the prevalence of the multiple, 

competing possibilities known to the explorationists. 

For purposes of arriving at a managerial decision, the 

extent and role of multiple, divergent predictions are 

bracketed. However, among the explorationists there is 

a healthy interest in entertaining multiple possibilities at 

the same time.  

Earlier, we emphasized how highly explorationists 

regard well data—the closest they have to “hard” data. 

This should not be misconstrued as suggesting that 

explorationists trust well data at face value, as they 

regularly provide deeply ambiguous results that feed 

divergent possibilities, neither of which can be put to 

rest by the data themselves. Despite the presence of 

“big” data, the explorationists’ prospects (predictions) 

are underdetermined by the data. One explorationist 

illustrates the dilemma. One aspect or type of well data 

is the analysis of hydrocarbons’ chemical 

compositions. Hydrocarbons from different oil 

reservoirs have varying compositions. Each has a 

unique chemical profile that allows for the discernment 

of hydrocarbons from two different oil reservoirs. 

Normally, one would assume that two wells in close 

proximity to each other would draw from the same oil 

reserve. The explorationist is puzzled:  

In one of the fields in our area, each well is 

different when it comes to the [origins of the] 

hydrocarbons. They have different chemical 

compositions, which is really strange. They 

are so close by, you would think they are all 

the same, but they are not. [The geology] is 

very complex in some areas. 

What he refers to with “complex” geology, is that there 

are multiple irreconcilable—given available data—

interpretations depending on the assumptions about the 

geological history (erosion, faults). This ambiguity or 

multiplicity is not so much resolved as relegated to a 

nagging uncertainty that, in later situations, may turn 

into a salient rather than a latent possibility.  

Digital tools for managing and interpreting well logs, 

processing and interpreting seismic data, doing seismic 

well tie-ins, plus basin modeling and simulation are 

crucial to explorationists’ ability to juggle multiple 

possibilities. Increased computing capacity and new 

digital seismic processing and interpretation tools make 

the creation of 3D seismic cubes (3D seismic data sets 

made from other multiple seismic data), which was 

previously prohibitively time-consuming, more 

practical. One explorationist told us over lunch how he 

was working in a field with 200 variants of the same 

3D seismic cube. From the outside, there was no way 

of knowing the purpose of all 200 variants. The one 

officially quality-controlled variant shed little light on 

the other 200. As he was interested in a particular 

subsurface level in the project, he looked into it. 

Perhaps there was an underlying implicitly assumed 

idea that he had missed. He asked himself: “What was 

this idea? Why? It is not apparent in that ‘pick’ [their 

term, implying interpretation of a subsurface of the 

seismic level in light of subsurfaces picked from well 

data]. You have some new data that do not fit. How is 

it connected?”  

Coping with multiple possibilities is fundamentally 

collective. In formal discussions, but more often and 

more importantly in informal, peer-based discussions, 

explorationists collectively deliberate multiple 

possibilities: “When you talk to experts and advisors, 

they stress the nuances, and the details in it, and 

especially the dimensions in it.” Peer-based discussions 

are vital to avoid tunnel vision that working strenuously 

with a prospect easily might create. As one 

explorationist confessed, after a while, “you begin to 

think [your work] is great, [so] we have to drill it.” 

The prevalence of multiple and radically different 

interpretations is internalized by explorationists as part 

of their professional identity. However, institutional 

constraints make it organizationally and politically 

necessary at times to bracket this inherent multiplicity. 

Multiplicity is not resolved or eliminated as much as put 

temporarily on hold for purposes of passing one of 

OilComp’s decision gates. The task of “risking” (their 

term) a prospect is illustrative. Risking is the 

quantification of qualitatively manipulating the 

prospect. One explorationist commented: “Concerning 

that part that is named risking, we put a probability that 

you have a trap, that it is sealed that you have a reservoir, 

that you have migration.” Crucially, quantified 

measures for variables such as rock porosity and 

permeability, oil saturation, viscosity, and volumes are 

assigned with each prospect. Despite estimates, risking 

contains “a lot of speculation and (subjective) opinions,” 

but still necessarily legitimizes OilComp’s gated 

decision processes. The problems with quantifying the 

probabilities of an oil discovery for different prospects 

under consideration are particularly pronounced for 

those with medium-range probabilities, i.e., 10-25%: 

“Here we are struggling. They diverge in all directions.” 

5 Discussion 

Actualizing data’s representational capacity into 

everyday work processes mired in data uncertainty and 

ambiguity tests “the limits of meaning” (Weick, 1985, 

p. 64). Sensor-based IoT data, thoroughly manipulated 

algorithmically, do not “faithfully” mirror the physical 

conditions of the geology, i.e., data might easily 

become mere signs or symbols with little or no 

relevance to explorationists’ work practices. Thus, 



www.manaraa.com

Journal of the Association for Information Systems 

 

1729 

how do data acquire meaning in the sense of being 

woven into work practices (i.e., by being actualized)? 

We discuss the three patterns constituting data-centric 

knowing relative to existing literature. We emphasize 

the social and material conditions of data-centric 

knowing. In addition, we recognize the broader 

institutional fabric in OilComp embedding the three 

patterns of practices of data-centric knowing.  

The data that inform explorationists’ work practices 

are what Knorr Cetina (1999) identifies as signs and 

Bailey et al. (2012) as symbols. This makes the 

problem of “referential attribution” immediate 

(Kallinikos, 1999). Data are “ ‘footprints’ of [physical] 

events, rather than ... the events themselves” (Knorr 

Cetina, 1999, p. 41). They are, in our case, “footprints” 

of physical geology that are mediated (hence distorted) 

by sensors and algorithmically manipulated to make 

their correspondence with the originating geology 

anything but “faithful” (see Monteiro & Parmiggiani, 

2019). Consider the two types of sensor-based IoT data 

that are by far the most important to explorationists’ 

work practices: seismic and well-log data. From a 

campaign of seismic shooting, less than 1% of the data 

is kept. The remainder is removed through a variety of 

nonlinear mathematical filtering techniques. The 

seismic data actually used in explorationists’ work 

practices are accordingly a fraction of available data, 

and mathematically filtered (i.e., algorithmically 

manipulated). Similarly, well-log data are generated 

from sensors that capture radioactive radiation, 

electromagnetic conductivity, and electrical resistivity 

by lowering measuring equipment down into the 

drilled well. Particular patterns of values in the sensor-

based IoT readings are “footprints” of geophysical 

properties as, for instance, gamma radiation is higher 

in shale than in sandstone, and electrical resistivity is 

higher in oil than in water (see Bowker, 1994).  

With data never being stable—they are transient, 

dynamic, contingent, and subject to aggregation, 

slicing, and other manipulation (Kallinikos et al., 

2013)—there is, by implication, an “inherent epistemic 

uncertainty” (Alaimo et al., 2020) that makes crucial 

the question of how the weaving of data into work 

practices unfolds. The chronic dilemma that 

explorationists grapple with is how the data become 

more than mere symbols, and how data are drawn into 

consequential action and decision making. Our three 

patterns of work practices—accumulating, reframing, 

and prospecting—as demonstrated in the previous 

section, are key. We discuss how our three patterns 

resonate with existing literature.  

Our accumulating pattern captures the constant hum of 

mundane work that goes into making the data 

amendable and accessible as data. Scholars have 

pointed out what Edwards (2011) calls “data friction,” 

which includes washing, calibrating, and slicing up 

data (see Leonelli, 2014). There is ample evidence of 

data friction in our case as well (e.g., the efforts 

involved in “well tie-ins” or quality-assuring data). 

However, because of the particular epistemic 

uncertainty of data, there is a considerable amount of 

work involved in supporting and triangulating one 

kind of data by connecting and hence grounding it 

relative to other supporting data. In isolation, data 

literally are a symbol. As Morgan (2010, p. 4) points 

out, “we depend upon systems, conventions, 

authorities and all sorts of good companions to get 

[data] to travel well.” By supporting and confirming 

them, data are grounded in additional data similar to 

the way triangulation works (see Weick (1985) 

underscoring the importance of triangulation in all 

human sensemaking). How, then, does this form of 

accumulating confirming otherwise fragile data work? 

A principal manner is that data are assigned different 

levels of epistemic uncertainty. All data suffer from 

epistemic uncertainty, but some more acutely than 

others (see Chang, 2004; Østerlie & Monteiro, 2020). 

In our case, well-log data are viewed as more reliable 

than seismic data because of better resolution. An 

important way to back up otherwise inconsistent 

(thereby potentially dismissed) data is by connecting 

them to other types of data, as pointed out by 

Kallinikos (1999). In our case, this is illustrated when 

each of the relevant seismic sections is carefully 

connected to neighboring wells’ fine-granular well-log 

data, a manual process known as well tie-in (see details 

in the previous section).  

The accumulating pattern’s modus operandi is that of 

confirmation, i.e., the conditions and processes for 

supporting data that otherwise risk being mere symbols. 

The efforts that go into supporting and triangulating data 

are investments that risk creating path dependencies. 

Our second pattern, reframing, addresses the purposeful 

contesting of accumulated (i.e., supported and 

triangulated) data. The pattern of reframing accordingly 

addresses situations at the boundaries of the 

accumulating work pattern’s reach. Efforts covered by 

the accumulating pattern to iron out wrinkles, 

inconsistencies, and outliers in the data are attainable 

only up to a certain level. The pattern is contested by the 

arrival of a new type or new data set triggering and 

abductively searching for new ways to make sense of all 

the data, new and old. In our case, this amounts to 

coming up with a new geological narrative in the form 

of a sequential process of shifting tectonic plates, up- 

and down-lifting, and erosion and faults—conditions 

that make hydrocarbons plausible (see Wylie, 2002, 

who argues for the importance of a narrative 

understanding in archaeology). The drilling of a new 

exploration well—with new, highly valued well data—

as illustrated in the previous section (“any new well can 

change the basin evolution”), provides a possibility to 

challenge the entrenched, path-dependent understanding 

that results from the accumulating work pattern. 
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Abductively challenging the accumulating pattern’s 

everyday hum, the search for new interpretations and 

geological models is, as already emphasized by Peirce 

(1931, p. 5.600), regulated and bounded. The work 

pattern is not an open-ended search, but rather is 

bounded by time and resource constraints aimed at a 

plausible, imperfect solution, as pointed out by 

Lyytinen and Grover (2017). In our case, new data 

come with a hefty price tag. Well data from drilling, in 

particular, but also from new seismic surveys, 

represent significant economic investments. The 

abductive nature of the work pattern of reframing is, 

accordingly, directional and goal-seeking. An example 

is provided by Dunne and Dougherty (2016, p. 132), 

who demonstrate how scientists in the 

biopharmaceutical industry apply abductive reasoning 

as a “deliberate and methodological” social process to 

“navigate in the labyrinth” of drug innovation. Adding 

to such studies that point out how clues enable 

practitioners working abductively to “conceive of a 

whole design almost at once” (Dunne & Dougherty, 

2016, p. 151), we find that explorationists challenge 

clues by rubbing them up against historical data. Leads 

or clues, in the commercial environment of OilComp’s 

explorationists, come with economic returns and risk, 

because, as one regional explorationist noted, “we are 

in competition with thousands of others, and there are 

many other very skilled geologists and geophysicists 

around who have seen and are aware of all the well-

known stuff.” Reframing is thus generative in the sense 

that it involves being able to justify the unknown—

potentially with bigger economic returns—and is 

simultaneously limited because it requires necessary 

backing in historical data, i.e., more well-known data. 

As a direct consequence of their disconnect with their 

originating, physical referents (Alaimo et al., 2020; 

Borgmann, 1999; Kallinikos, 1999; Kallinikos et al., 

2013; Knorr Cetina, 1999), data as signs or symbols 

come with inherent epistemic uncertainties. Both of 

the preceding patterns of work practices are aimed at 

eliminating or regulating this uncertainty: The 

accumulating pattern covers practices of 

conservatively supporting and triangulating 

otherwise vulnerable interpretations of data, while the 

reframing pattern covers the abductive refactoring of 

an earlier interpretation triggered by the arrival of 

new data that are incompatible with the old. However, 

our third pattern of work practices is different. It 

addresses how explorationists, rather than trying to 

eliminate epistemic uncertainty, cultivate and 

encourage a multiplicity of interpretations of data, 

thereby embracing rather than resolving 

epistemological uncertainty while simultaneously 

avoiding halting operational decisions. In contrast to 

both of the preceding patterns of work practice, 

prospecting has not been addressed in the context of 

data and datafication. 

To develop the prospecting work pattern, it is helpful to 

compare it to the notion of search (Stark, 2009). 

Explorationists search for something not yet recognized 

as a category. In our case, the well-defined search for 

proven plays (i.e., geological configurations 

demonstratively yielding hydrocarbons in the areas 

under scrutiny) could, and regularly does, spill over into 

the ill-defined search for unproven plays (i.e., potential, 

but not yet demonstrated, geological configurations for 

yielding hydrocarbons). The data radically 

underdetermine this search (see Loch et al., 2011). The 

efforts covered by the former two patterns of work 

practices bracket the uncertainty, but it may resurface.  

The prospecting work pattern also fills productive, 

organizational roles, as it is “through divergent or 

misaligned understandings that problematic situations 

can give way to positive reconstructions” (Stark, 2009, 

p. 192). Keeping an eye open for new, unproven plays 

is crucial for OilComp. Ambiguity exists over whether 

the data at hand support proven plays or might, in fact, 

indicate something radically different. The multiplicity 

of interpretations is regulated in what is fundamentally 

a collective: They are played out, deliberated, and 

regulated in collective arenas that result in partial 

agreements (see Oborn et al., 2011). In our case, the 

formal and informal peer-based feedback sessions 

manifest this collective, in ways similar to how medical 

physicians are trained to always be open to secondary, 

alternative diagnoses in their treatment of patients 

(Timmermans & Berg, 2000). 

The prospecting pattern underscores how consensus is 

never arrived at, but rather is worked around in temporal 

and local arrangements, resonating with Mol’s (2002) 

study of how medical specializations such as surgery and 

pathology—despite radical differences in routines, 

theories, vocabulary, and instruments—forge temporary 

agreements about how to treat atherosclerosis in patients. 

Underscoring, as we have done, the productive role of the 

prospecting pattern begs the question of how the practical 

problem par excellence is decided, i.e., what to do next. 

As Kellogg et al. (2006, p. 38) point out: “Instead of … 

shared meanings and common knowledge, organizational 

actors juxtapose their diverse efforts into a provisional 

and emerging collage of loosely coupled contributions.” 

In short, the pattern of prospecting does not undercut 

decision-making and action-taking, but temporal, partial 

arrangements, rather than full-fledged consensus, are 

required.  

The three patterns discussed above that comprise data-

centric knowing flesh out the work practices of 

explorationists. As scholars have pointed out (Kallinikos, 

2004), practice-oriented perspectives risk becoming near-

sighted in the sense of downplaying broader historic and 

institutional contexts that go beyond the “here and now” 

(see also Monteiro et al., 2014). We thus discuss tenets of 

the institutional fabric that underwrite data-centric 

knowing. This is in line with Porter (1995, p. 44; see also 
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Poovey, 1998) who argues that meshing data with 

institutional routines is central to their actualization: 

“Given the ways that [data] measures can be undermined 

… we may doubt that they correspond to anything in the 

world. But a plausible measure backed by sufficient 

institutional support can nevertheless become real.”  

A key element of the institutional fabric embedding of 

data-centric knowing in OilComp is the compliance with 

a formally defined, sequential process known as a 

“funnel” (see Figure 2). The increased level of formal 

requirements for data as decisions move through 

OilComp’s decision gates come with markedly ritual 

connotations. As one explorationist laughingly put it, “all 

our models are wrong,” an insight that explorationists 

often believe has been lost on “the guys upstairs 

[management].” In the funnel, when zooming in on 

candidates for commercially viable oil reservoirs 

(“prospects”), a need exists to manage the portfolio of 

prospects. There are typically tens if not hundreds of 

prospects, so the operational concern at this decision gate 

is how to prioritize efforts when pursuing prospects. 

Briefly, prioritization relies heavily on the quantification 

of prospects’ estimated risks, costs, and revenues. 

However, as Porter (1995) convincingly documents, trust 

in numbers comes at one’s own peril, as numbers hide as 

much as they reveal. Nevertheless, the conflation of rich 

geological interpretations with quantified estimates feeds 

business operational needs for making decisions (Scott, 

1998), as illustrated by the use of Monte Carlo 

simulations and so-called “risking” (see preceding 

Findings section). 

To summarize, the crafting of institutional facts at 

OilComp is not a steady march from uncertain, error-

prone data to solid facts. What we see is a formalized and 

sequential process in which, for operational needs to 

move forward, the epistemological uncertainty of data is 

provisionally bracketed to reach a decision. However, 

uncertainty is never eliminated. Away from the formal 

decision gates at the managerial level, professional 

deliberations persist and thrive among explorationists. 

Data engage, as it were, in two different language games: 

the explorationist community vs. the managerially 

governed decision gates (Mol, 2002; Oborn et al., 2011). 

6 Conclusion 

A program launched decades ago (Knorr Cetina, 1999; 

Zuboff, 1988), the problem of “referential attribution” 

(Kallinikos, 1999)—how data that lack any immediate 

correspondence or similarity with physical objects, 

processes, or qualities acquire meaning by being woven 

into everyday work practices—is gaining empirical 

relevance and significance with ongoing datafication of 

our lifeworld. Key to this project is empirical grounding 

(Günther et al., 2017; Lyytinen & Grover, 2017). 

Clearly, our articulation of the three patterns of 

interwoven work practices constituting data-centric 

knowing emerges from a particular case study. What, 

then, is the relevance of our analysis to other empirical 

domains? As Kallinikos (1999, p. 289) points out, “the 

project … needs, therefore, to pass through both the 

investigation of other empirical contexts and even 

involve the more successful integration of the relevant 

available literature.” 

In translating the analysis underpinning data-centric 

knowing to other domains, the concept will inevitably 

be appropriated and hence modified. Theoretical 

concepts travel via not despite appropriation (Walsham, 

1995). Our case is characterized by three salient aspects 

that significantly shaped our analysis: inherently 

uncertain data and interpretations, quasi-scientific 

approaches, and a corporate, operational logic. We 

expect generalization qua translation to other domains 

with similar characteristics. (1) Inherent uncertainty: 

other domains also evolve around uncertain data—e.g., 

security analysts tasked with predicting the value of 

stocks to investors deal with inherent uncertain data-

driven interpretation (Beunza & Garud, 2007) or 

Gartner group’s analysts predicting future industry 

trends (Pollock & Williams, 2016). (2) Quasi-scientific 

communities: the search for and openness toward the 

unknown, captured in our prospecting pattern, is likely 

to be found in communities with strong scientific 

identities such as medicine (Timmermans & Berg, 

2010), biology (Leonelli, 2014), and high-energy 

physics (Knorr Cetina, 1999), as scientific models are 

regularly underdetermined by data. (3) Corporate logic: 

the time- and resource-bounded nature of satisficing 

search, key to our reframing pattern, is likely to show up 

across a variety of corporate settings (see e.g., Passi and 

Jackson’s [2018] study of data analytics at a telecom 

vendor). In addition, the cross-pressure surrounding 

operational decision-making stemming from competing 

agendas of professional norms, formal rules, and 

operational demands has been identified in safety-

critical, operational settings (Perin, 2006; see also Fine, 

2009). 

In closing, our hope is that the analysis articulated in the 

three patterns of work practices may provide a fertile 

and generative breeding ground for pursuing a research 

program that “gets under the hood” of data science in IS 

through practice-oriented studies. 
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